Convergence and Loss Bounds for Bayesian Sequence Prediction

نویسنده

  • Marcus Hutter
چکیده

The probability of observing xt at time t, given past observations x1...xt−1 can be computed with Bayes’ rule if the true generating distribution μ of the sequences x1x2x3... is known. If μ is unknown, but known to belong to a class M one can base ones prediction on the Bayes mix ξ defined as a weighted sum of distributions ν ∈M. Various convergence results of the mixture posterior ξt to the true posterior μt are presented. In particular a new (elementary) derivation of the convergence ξt/μt→1 is provided, which additionally gives the rate of convergence. A general sequence predictor is allowed to choose an action yt based on x1...xt−1 and receives loss lxtyt if xt is the next symbol of the sequence. No assumptions are made on the structure of l (apart from being bounded) and M. The Bayes-optimal prediction scheme Λξ based on mixture ξ and the Bayes-optimal informed prediction scheme Λμ are defined and the total loss Lξ of Λξ is bounded in terms of the total loss Lμ of Λμ. It is shown that Lξ is bounded for bounded Lμ and Lξ/Lμ→1 for Lμ→∞. Convergence of the instantaneous losses are also proven.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Two-Sample Prediction with Progressively Type-II Censored Data for Some Lifetime Models

Prediction on the basis of censored data is very important topic in many fields including medical and engineering sciences. In this paper, based on progressive Type-II right censoring scheme, we will discuss Bayesian two-sample prediction. A general form for lifetime model including some well known and useful models such asWeibull and Pareto is considered for obtaining prediction bounds ...

متن کامل

Comparison of Estimates Using Record Statistics from Lomax Model: Bayesian and Non Bayesian Approaches

This paper address the problem of Bayesian estimation of the parameters, reliability and hazard function in the context of record statistics values from the two-parameter Lomax distribution. The ML and the Bayes estimates based on records are derived for the two unknown parameters and the survival time parameters, reliability and hazard functions. The Bayes estimates are obtained based on conju...

متن کامل

On the Foundations of Universal Sequence Prediction

Solomono completed the Bayesian framework by providing a rigorous, unique, formal, and universal choice for the model class and the prior. We discuss in breadth how and in which sense universal (non-i.i.d.) sequence prediction solves various (philosophical) problems of traditional Bayesian sequence prediction. We show that Solomono ’s model possesses many desirable properties: Fast convergence ...

متن کامل

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

Non-linear Bayesian prediction of generalized order statistics for liftime models

In this paper, we obtain  Bayesian prediction intervals as well as Bayes predictive estimators under square error loss for generalized order statistics when the distribution of the underlying population belongs to a family which includes several important distributions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2003